The Global Water Cycle

Accounting, Cycling, and Controls

(1) Accounting:

<u>Location</u>	<u>Amount</u> (km ³ x 10 ⁶)
Rocks (unavailable)	150
Oceans	1,350
Ice	27.5
Groundwater	15.3
Lakes and Rivers	0.025
Atmosphere (vapor)	0.013

The Laurentian Great Lakes contain ~20% of all the world's freshwater

Freshwater is SCARCE!

The Global Water Cycle

(2) Cycling:

<u>Pathways</u>:

Precipitation, Evaporation, Vapor transport, Runoff

Residence Times:

- (A) Ocean $R_T = (\text{total in ocean}) / (\text{evaporation})$ = (1,350 x 10⁶ km³) / (0.425 x 10⁶ km³/yr) = 3,176 years
- (B) Calculate the atmospheric residence time = ?

(3) Controls:

- (A) Human Consumption
- **(B)** Temperature
 - 1. Glacier melting
 - 2. Sea level rise
 - 3. Changes in deep-water formation
- (C) Land-use changes

A. Human Consumption of Freshwater

Local problems, soon to become regional problems

B. Increasing Temperature is Melting Glaciers

Switzerland

Andes

Increasing temperatures are raising the mean sea level

The flow of freshwater in rivers to the Arctic Ocean will likely increase as the temperature warms and glaciers melt.

This could place a "cap" on the sea and prevent deep-water from forming.

Increased freshwater input to the Arctic Ocean may prevent "deep-water formation"

Interactions in the Hydrological Cycle *Low water levels on Lake Michigan in 2000*

Reduced ice cover increased the amount of time for evaporation to lower the lake levels.

The Global Nitrogen Cycle

Accounting, Cycling, and Controls

(1) Accounting:

Location	<u>Amount</u> (10 ¹⁵ g)
Rocks & Sediments (unavailable)	190,400,120
Atmosphere Ocean Soils Land Plants Land Animals	3,900,000 23,348 460 14 0.2

In the atmosphere,	$N_2 = 3,900,000$	
	$N_2O =$	1.4
	NO _x =	0.0006

The Global Nitrogen Cycle – Pathways and Fluxes

Fluxes in 10¹² g/yr

(2) Cycling

Pathways and Reactions:

- $N_2 \rightarrow Organic N$ "N-fixation"
- Organic N \rightarrow NH₄⁺ "Mineralization"
- $NH_4^+ \rightarrow NO_3^- + NO + N_2O$ "Nitrification"
- $NO_3^- \rightarrow N_2 + N_2O$
- "Denitrification" • NO₃⁻ or NH₄⁺ \rightarrow Organic N "Plant Assimilation"

(2) Cycling

Fluxes and Residence Times:

R_T of *N₂* in the atmosphere =
= (total in atm, 10¹⁵g) / (output, 10¹⁵g/yr)
= (3,900,000) / (0.158)
= 24.68 Million years *R_T* of NO_X (NO + NO₂) in the atmosphere =

(0.6) / (60) = 0.01 year = 3.6 days

- (3) Controls -- examine the case of Acid Rain
 - (A) NO_x and Acid Rain $NO + O_3$ (ozone) $\longrightarrow NO_2$ $NO_2 + OH \longrightarrow HNO_3$ (nitric acid)

HNO₃ dissociates in water to form H⁺ and NO₃⁻

- (B) Sulfuric acid formation $H_2SO_4 \longrightarrow 2 H^+ + SO_4^-$
- The H⁺ product in both reactions provides the "acidity"
- Acid Rain is caused by a combination of element cycles

Atmospheric chemical reactions that produce acid rain

Chemical reactions with H⁺ in the soil lead to loss of buffering capacity

H⁺ input increases the output of cations like <u>Aluminum</u>

Many areas of the U.S. are sensitive to acid rain

Summary

• The hydrological cycle is influenced or controlled by temperature, land-use changes, and human consumption.

• Acid Rain is an important consequence of the nitrogen and sulfur cycles interacting. Acid rain is produced by the interactions of these and other elements in the atmosphere, and the impacts of acid rain are controlled by other element cycles on land and in the water.

• The main take-home message for today's lecture is:

"ELEMENT CYCLES INTERACT, and they cannot be studied in isolation"